
Conclusions and Future Work

• Consistent loop rates with low jitter at all frequencies

• Planned developments include robust logging module and

further integration with ROS

We welcome the community to download,

use and contribute to CORC at:
github.com/UniMelbHumanRoboticsLab/CANOpenRobotController

CANopen Robot Controller (CORC):
An open software stack for human robot

interaction development

Justin Fong*, Emek Barış Küçüktabak$†, Vincent Crocher*,
Ying Tan*, Kevin M. Lynch$, Jose L. Pons$†, Denny Oetomo*

*University of Melbourne and Fourier Intelligence Joint Laboratory, The University of Melbourne
$McCormick School of Engineering, Northwestern University
†Legs + Walking Lab, Shirley Ryan Ability Lab
Correspondence: fong.j@unimelb.edu.au

WeRob 2020

Motivation

• Development of control strategies and algorithms is

becoming increasingly important in wearable robotics

• CANopen is a well-established industrial protocol

commonly used in many robotics platforms

This work introduces CANopen Robot Controller (CORC) – an

open-source software stack designed to accelerate algorithm

development.

CORC Overview

• Linux-based for portability and wide hardware platform

support

• C (low level) and C++ (high level) implementation to

leverage efficiency and object oriented programming

• Designed for application on any CANopen-based hardware

• Modular 3-layer design to maximise code portability:

CORC is published under the permissive Apache-2.0 license.

X2 Exoskeleton (Fourier Intelligence) [2]

Input/Output: 4 Copley Accelnet ACK-055-06

motor drives, 4 custom force sensors

Computer: Laptop (Intel Core i7-9750H CPU,

16.0GB RAM with a PCAN-USB adapter)

OS: Ubuntu 18.04, ROS Melodic

EMU Upper-Limb Rehabilitation Robot

[3]

Input/Output: 3 Kinco FD123-CA motor drives

Computer: Beaglebone AI (Dual ArmCortex-

A15, 1.0GB RAM)

OS: Debian, Linux Kernel v4.14 with

PREEMPT-RT patch

Timing Evaluation

• Software applications were run with different nominal

loop periods for at least 60 seconds each

• Actual loop periods were recorded, and are reported as

percentage of nominal

Results

• Mean loop period within 0.001% of nominal in all cases

• EMU platform incapable of running at <2ms period

Tested Hardware Platforms

Demonstrative Software Applications

X2-P: Position control with inverse kinematics between

sitting and standing postures; ROS Node broadcasting joint

position and force to RViz visualisation

EMU-I: Impedance control with position-dependent gravity

compensation

EMU-P: Position control minimum jerk task space trajectory

Implementation Notes

• Applications did not require any modification at the

CANopen Layer, despite no common hardware

• EMU-I and EMU-P differed only at the Application Layer

CANopen Layer

• CANopen stack based on CANOpenSocket [1]

(C)

Robot Layer

• Describes robot structure abstracting I/O

(C++)

Application Layer

• Overall program logic and control strategies

• State Machine structure

• Application-specific libraries (e.g. ROS)

(C++)

Rarely

requires

change

Modification

with new

hardware

only

Changes

with

program or

algorithm

References
[1] CANOpenSocket: https://github.com/CANopenNode/CANopenSocket

[2] Fourier Intelligence, X2 http://www.fftai-global.com/lower-extremity/

[3] Fong, J, et al. ”EMU: A transparent 3D robotic manipulandum for upper-

limb rehabilitation.” ICORR 2017. pp. 771-776

*Extents of box capture exactly 80% of datapoints. Extents of

whiskers capture exactly 99%

